Wander Types A Formalization of Coinduction - Recursion ∗
نویسندگان
چکیده
Wander types are a coinductive version of inductive-recursive definitions. They are defined by simultaneously specifying the constructors of the type and a function on the type itself. The types of the constructors can refer to the function component and the function itself is given by pattern matching on the constructors. Wander types are different from inductive-recursive types in two ways: the structure of the elements is not required to be well-founded, so infinite applications of the constructors are allowed; and the recursive calls in the definition of the function are not required to be on structurally smaller arguments. Wander types generalize several known type formers. We can use the functional component to control the way the data branch. This allows not only the implementation of coinduction, but also of induction, by imposing well-foundedness through an appropriate function definition. Special instances of wander types are: plain inductive and coinductive types, inductive-recursive types, mixed inductive-coinductive types, continuous stream processors.
منابع مشابه
Wander types : A formalization of coinduction - recursion ∗
Wander types are a coinductive version of inductive-recursive definitions. They are defined by simultaneously specifying the constructors of the type and a function on the type itself. The types of the constructors can refer to the function component and the function itself is given by pattern matching on the constructors. Wander types are different from inductive-recursive types in two ways: t...
متن کاملMechanizing Coinduction and Corecursion in Higher-order Logic
A theory of recursive and corecursive definitions has been developed in higher-order logic (HOL) and mechanized using Isabelle. Least fixedpoints express inductive data types such as strict lists; greatest fixedpoints express coinductive data types, such as lazy lists. Wellfounded recursion expresses recursive functions over inductive data types; corecursion expresses functions that yield eleme...
متن کاملLinear Abadi & Plotkin Logic
We present a formalization of a version of Abadi and Plotkin’s logic for parametricity for a polymorphic dual intuitionistic / linear type theory with fixed points, and show, following Plotkin’s suggestions, that it can be used to define a wide collection of types, including existential types, inductive types, coinductive types and general recursive types. We show that the recursive types satis...
متن کاملLinear Abadi and Plotkin Logic
We present a formalization of a version of Abadi and Plotkin’s logic for parametricity for a polymorphic dual intuitionistic/linear type theory with fixed points, and show, following Plotkin’s suggestions, that it can be used to define a wide collection of types, including existential types, inductive types, coinductive types and general recursive types. We show that the recursive types satisfy...
متن کاملGeneral recursion via coinductive types
A fertile field of research in theoretical computer science investigates the representation of general recursive functions in intensional type theories. Among the most successful approaches are: the use of wellfounded relations, implementation of operational semantics, formalization of domain theory, and inductive definition of domain predicates. Here, a different solution is proposed: exploiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012